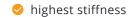
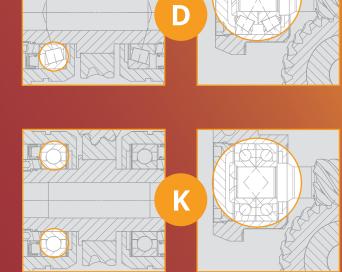

ZAE Servo-Drive


DEVELOPED FOR THE HIGHEST DEMANDS IN SERVO TECHNOLOGY

The new dimension in drive technology

ZAE sets new standards for servo drives with various application requirements. The proven ZAE quality in compact design and maximum torsional rigidity meets all requirements for highly dynamic servo applications.



- very high positioning accuracy
- 📀 extreme overload capacity
- 🤣 vibration and shock absorbing
- 📀 smooth run
- very compact
- eccentric cover for adjusting and readjusting the gear backlash

Optimally adjusted: The variable bearing concept

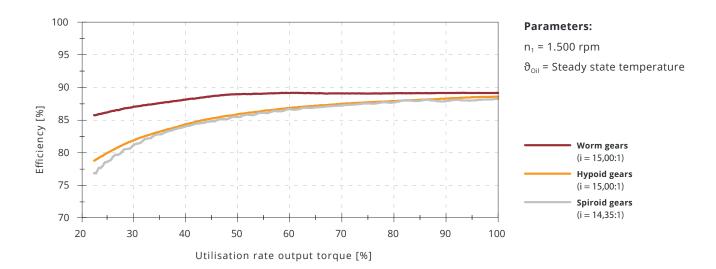
The new ZAE SERVO-DRIVE is equipped with tapered roller bearings or ball bearings to meet specific requirements. This possibility of choice creates flexibility for your application.

D High rigidity and high external for


high external forces for dynamic operation or precise positioning tasks

Energy-efficient operation for continuous operation modes

The ZAE-developed **hermetic pressure equalisation**


Integrated in the housing, the system offers maximum safety for sensitive processes, because here, nothing can leak out. The concept of hermetic pressure compensation developed by ZAE works cleanly and reliably.

- Membrane provides pressure compensation
- < no gear venting necessary
- < no oil leakage possible
- 🥺 integrated in gear housing

Efficiency ratio Comparative measurement of different gear concepts

The diagram below shows examples of measured efficiencies as a function of output torque. In this comparison, the ZAE worm gearbox performs best and achieves the highest efficiency. This is particularly true for the partial load range, which is often encountered in dynamic applications.

The features at a glance

in the coupling

by using adapter flanges **Particularly rigid motor connection** <u>due to the use of a rigid sprocket</u>

Long service life and reliability due to generously sized roller bearings, which provide particularly high rigidity in the case of bearing concept "D"

Excellent synchronism due to the precisely machined worm gearing

Increased rigidity

due to a worm gear welded onto the hollow shaft

 _	

Optimum bearing concept

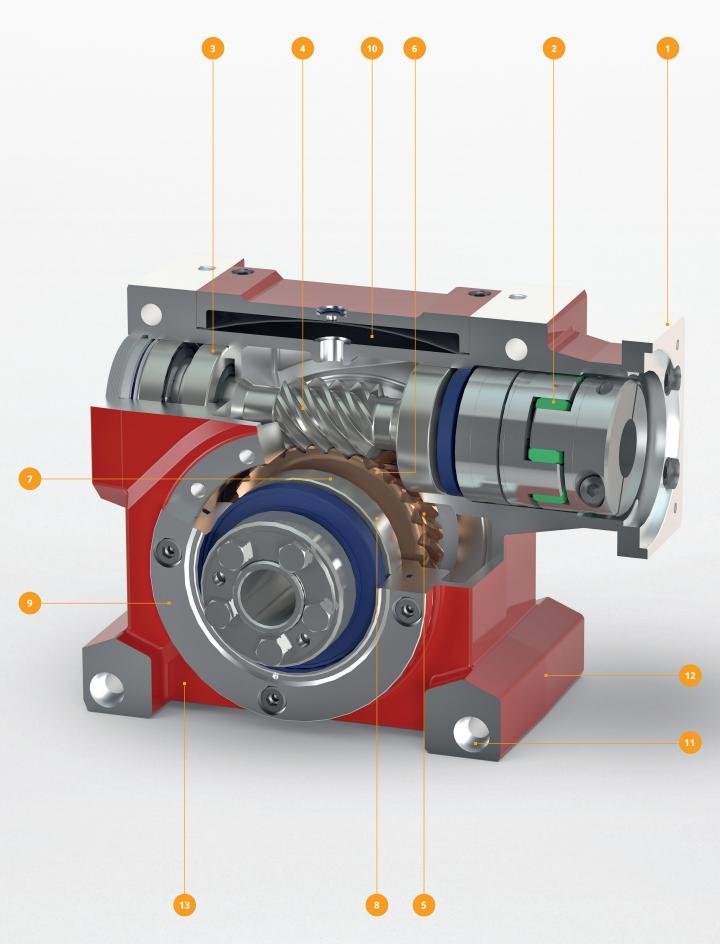
due to choice between a rigid heavy-duty tapered roller bearing or a smooth-running energy-efficient ball bearing, depending on the application

8 Suitable for high external forces (e.g. from sprocket, belt or spindle) due to the O arrangement of the

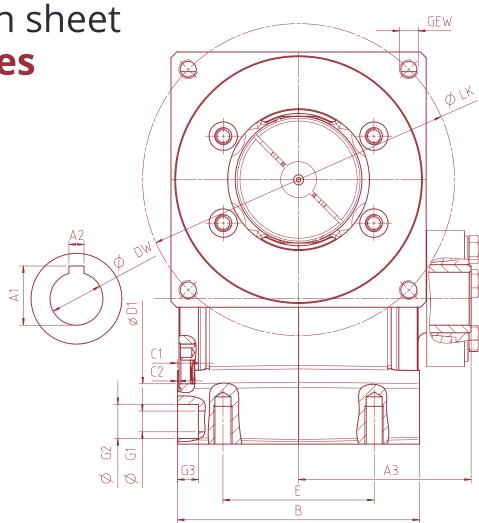
output side bearing

Simple, precise backlash adjustment by turning the output-side eccentric cover

No oil leakage possible, as the gear unit does not contain vent holes, but is equipped with hermetic pressure compensation

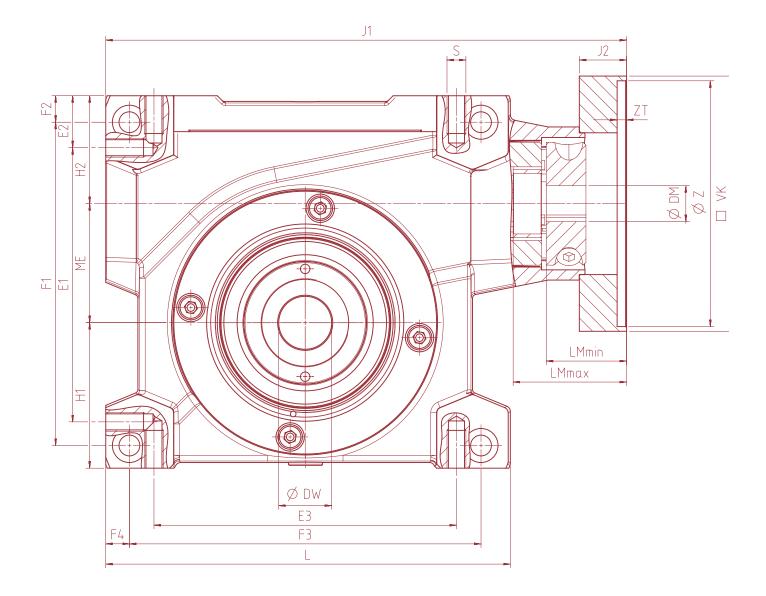

Universal mounting options through tapped holes and through holes for easy gear assembly

Low weight due to the use of aluminum as housing material



Suitable for the food and packaging industry, as lubricant with H1 approval is always used

Dimension sheet for all sizes


In this table you will find an overview of all important dimensions. You can download the corresponding STEP files from www.zae.de as well as request them from us. Should you have any questions, we look forward to hearing from you at verkauf@zae.de or Tel. +49 (0) 40 853 93-03.

Sizes	40	50	63	80	100
ME	40	50	63	80	100
L	157	177	214	252	309
В	110	122	128	160	172
H1	56	61	77	90	112
H2	45	51	57	62	75
DW H6 ¹⁾	20	25	28	36	48
A1 ²⁾	22.8	28.3	31.3	39.3	51.8
A2 ²⁾	6	8	8	10	14
A3 ³⁾	76.5	84.5	91.25	109	118
D1 H8	62	68	90	110	125
C1	6	6	5.75	6	6
C2	1	1	0.75	1	1
E	75	85	80	120	1354)
E1	102	121	145	185	232
E2	19	20	27.5	23	28
E3	108	120	160	195	250
S	M6x12	M8x16	M10x20	M10x20	M12x24

1) Recommended fit for machine shaft h6

2) Only with model 00
 3) Only with model 05 / 06
 4) On the side opposite the motor: 120

Sizes	40	50	63	80	100			
F1	122	142	171	209	262			
F2	9.5	10	14	12	13			
F3	135	152	186	226	280			
F4	9.5	11	12.5	11.5	13			
G1	9	9	11	11	14			
G2	15	15	18	18	20			
G3	10	10	11	11	13			
VK	Depending on motor							
Z H8			Depending on motor					
ZT			Depending on motor					
LK			Depending on motor					
GEW			Depending on motor					
DM			Depending on motor					
LMmin			Depending on motor					
LMmax			Depending on motor					
J1			Depending on motor					
J2			Depending on motor					

| Technical | Information

Z040						ZAE SE	RVO-DRIVE	
Ratio	i	[-]	4.0	6.4	10.0	16.0	27.0	39.0
Max. acceleration torque	M _{2;a}	[Nm]	59	79	84	81	89	73
S1 nominal torque ¹⁾²⁾	M _{2;51}	[Nm]	66	82	87	84	95	73
Backlash-constant torque	M _{2;v}	[Nm]	37	48	52	53	61	43
EMERGENCY STOP torque ³⁾	M _{2;NOT}	[Nm]	179	195	212	203	238	164
Max. input speed	n _{1;max}	[rpm]			80	00		
Backlash – standard		[arcmin]			<	6		
Backlash – reduced		[arcmin]			<	3		
Torsional stiffness	C _{t21}	[Nm/arcmin]			Ľ.	5		
Nominal efficiency (S1 operation)	η	[%]	95	94	91	86	80	72
Moment of inertia ⁴⁾⁵⁾	J_{red}	[kgcm ²]	0.8	0.6	0.5	0.5	0.5	0.4
Mass ⁶⁾	m	[kg]			5.6-	6.8)		

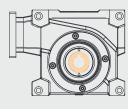
Z050						ZAE SE	RVO-DRIVE		
Ratio	i	[-]	4.0	6.4	10.0	16.0	27.0	39.0	
Max. acceleration torque	M _{2;a}	[Nm]	166	164	176	171	187	158	
S1 nominal torque ¹⁾²⁾	M _{2;S1}	[Nm]	120	130	168	177	187	159	
Backlash-constant torque	M _{2;v}	[Nm]	110	120	129	125	137	115	
EMERGENCY STOP torque ³⁾	M _{2;NOT}	[Nm]	357	374	420	399	471	315	
Max. input speed	n _{1;max}	[rpm]			70	00			
Backlash – standard		[arcmin]			<	6			
Backlash – reduced		[arcmin]			<	3			
Torsional stiffness	C _{t21}	[Nm/arcmin]			0	9			
Nominal efficiency (S1 operation)	η	[%]	96	95	92	88	81	76	
Moment of inertia ⁴⁾⁵⁾	J _{red}	[kgcm ²]	2.5	2.0	1.8	1.7	1.7	1.6	
Mass ⁶⁾	m	[kg]	8.5-11.2)						

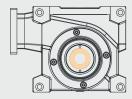
Z063						ZAE SE	RVO-DRIVE		
Ratio	i	[-]	4.0	6.4	10.0	16.0	27.0	39.0	
Max. acceleration torque	M _{2;a}	[Nm]	336	355	374	368	399	338	
S1 nominal torque ¹⁾²⁾	M _{2;51}	[Nm]	194	249	295	380	415	405	
Backlash-constant torque	M _{2;v}	[Nm]	257	265	279	274	297	247	
EMERGENCY STOP torque ³⁾	M _{2;NOT}	[Nm]	951	999	1100	1073	1100	788	
Max. input speed	n _{1;max}	[rpm]			55	00			
Backlash – standard		[arcmin]			<	6			
Backlash – reduced		[arcmin]			<	2			
Torsional stiffness	C _{t21}	[Nm/arcmin]			3	1			
Nominal efficiency (S1 operation)	η	[%]	96	96	93	90	84	79	
Moment of inertia ⁴⁾⁵⁾	J_{red}	[kgcm ²]	6.4	5.0	4.5	4.3	4.3	4.1	
Mass ⁶⁾	m	[kg]	14.9-18.3)						

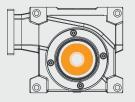
Z080						ZAE SE	RVO-DRIVE		
Ratio	i	[-]	4.0	6.4	10.0	16.0	27.0	39.0	
Max. acceleration torque	M _{2;a}	[Nm]	708	707	758	740	810	676	
S1 nominal torque ¹⁾²⁾	M _{2;S1}	[Nm]	415	495	608	613	612	630	
Backlash-constant torque	M _{2;v}	[Nm]	520	517	555	541	592	495	
EMERGENCY STOP torque ³⁾	M _{2;NOT}	[Nm]	1395	1464	1641	1567	1860	1305	
Max. input speed	n _{1;max}	[rpm]			45	00			
Backlash – standard		[arcmin]			<	6			
Backlash – reduced		[arcmin]			<	2			
Torsional stiffness	C _{t21}	[Nm/arcmin]			8	6			
Nominal efficiency (S1 operation)	η	[%]	97	96	95	92	87	82	
Moment of inertia ⁴⁾⁵⁾	J_{red}	[kgcm ²]	12.4	8.4	6.8	6.2	6.0	5.6	
Mass ⁶⁾	m	[kg]	22.5-27.1)						

Z100						ZAE SE	RVO-DRIVE	
Ratio	i	[-]	4.0	6.4	10.0	16.0	27.0	39.0
Max. acceleration torque	M _{2;a}	[Nm]	1475	1480	1690	1545	1680	1410
S1 nominal torque ¹⁾²⁾	M _{2;S1}	[Nm]	700	870	1100	1250	1120	1150
Backlash-constant torque	M _{2;v}	[Nm]	1083	1085	1443	1130	1230	1030
EMERGENCY STOP torque ³⁾	M _{2;NOT}	[Nm]	3000	3600	3800	4200	3800	3653
Max. input speed	n _{1;max}	[rpm]			36	00		
Backlash – standard		[arcmin]			<	6		
Backlash – reduced		[arcmin]			<	2		
Torsional stiffness	C _{t21}	[Nm/arcmin]			10	58		
Nominal efficiency (S1 operation)	η	[%]	97	96	94	91	84	80
Moment of inertia ⁴⁾⁵⁾	J _{red}	[kgcm ²]	36.5	25.0	20.7	18.7	18.3	17.3
Mass ⁶⁾	m	[kg]	36.7 - 47					

Specified data are indicative only. We will be pleased to advise you on an exact design.

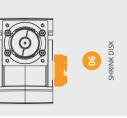

Specified data are indicative only. We will be pressed to advise you on an exact design.
S1 on minal torque without consideration of thermal limits
in continuous operation with 1,500 min⁻¹
EMERGENCY STOP torque without consideration of the permissible torque of the coupling and the output side shrink disk (for versions 05 and 06)
depending on the shaft diameter of the motor and the gear arrangement (output)
reduced to drive à reduced to input side
depending on motor adaptation and gear arrangement (output)


Output-side versions of the shaft


On the output side, three different shaft designs are available as standard (see illustration on the right).

For a form-fit connection by means of a feather key connection, the grooved hollow shaft can be used (00).

For a more rigid, frictional connection, a smooth hollow shaft with shrink disc can be used, for which the mounting side can be selected (05+06).



HRINK DISK

Sizes Quick selection

An initial estimation of which size is suitable for your application can be found in the figure below. The permissible acceleration torque is shown. For more detailed information, please refer to the respective performance table (see page 8–9 or under www.zae.de).

Our simplified ordering code

Z063 - 05 - DOO - 16.0:1 - 130/165/M05/24x50-N

1 Size

040 | 050 | 063 | 080 | 100

Gear arrangement (output)

05: Hollow shaft without groove, with shrink disk06: Hollow shaft without groove, with shrink disk00: Hollow shaft with groove(see page 8–9)

Bearing concept

D: optimised for dynamic operation **K:** optimised for continuous operation

Gearing backlash

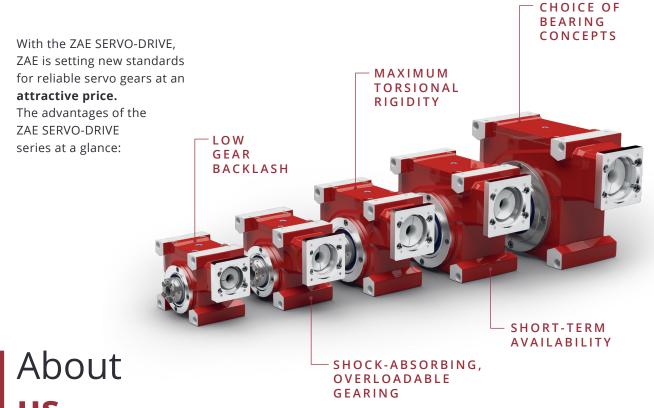
O: standard backlash **A:** reduced backlash

5 Model

O: standard according to catalogue **X:** in custom design

🧿 Ratio

04.0:1 | 06.4:1 | 10.0:1 16.0:1 | 27.0:1 | 39.0:1

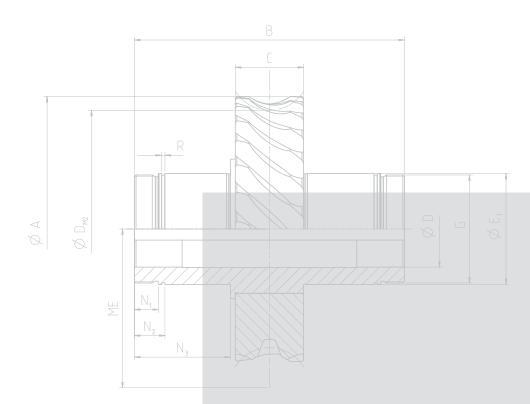

Dimensions of the flange for motor mounting

Ø centering diam. | Ø pitch diam. thread | motor shaft ØDxL

Coupling variant (for motor)

G: for smooth motor shaft without keyway **N:** for motor shaft with keyway

For the highest demands in servo technology



ZAE-Antriebssysteme – perfectly matched drive solutions

We design, develop and manufacture highperformance gears for the entire machine and plant engineering industry. As a longstanding Hamburg company, we build on more than 100 years' experience.

Our angular gears have stood for the highest quality for many years. This applies both to our extensive catalogue programme and to tailor-made drive solutions, which we develop entirely according to the specifications of our customers.

ZAE-AntriebsSysteme GmbH & Co KG

Schützenstraße 105 D-22761 Hamburg

Tel. +49 (0) 40 853 93 03 Fax. +49 (0) 40 853 93 232

E-Mail info@zae.de Web www.zae.de